COLL-AF 71-0216

Torsional Crystal Technique for the Measurement of Viscosities of Liquids at High Pressure

Trans. Faraday Soc. 61, 340-52 (1971)

BY A. F. COLLINGS * AND E. MCLAUGHLIN†

Dept. of Chemical Engineering and Chemical Technology, Imperial College, London S.W.7.

Received 13th July, 1970

The damping effect of a viscous medium on a torsionally vibrating quartz crystal has been used to measure the viscosities of liquids at high pressures. Results have been obtained for benzene, cyclohexane, carbon tetrachloride, isopentane and n-pentane at temperatures of 30 or 50° C and pressures up to 7000 kg cm⁻² in systems where the liquid did not freeze. Good agreement with existing high pressure data for these systems is obtained.

It is difficult to extend conventional techniques of high accuracy such as the capillary flow method to determine the viscosity of liquids at high pressures. Most of the effort in this field has therefore been confined to falling weight or rolling ball techniques. Even with these methods substantial problems remain in either rotating the high pressure system with the viscometer or uncoupling from it after each pressure change. It is therefore pertinent to explore alternative methods of determining the viscosity of liquids which do not present great difficulties at pressures up to about 10 000 bar and temperatures of the order of 100°C. In the present work, application of the torsional crystal technique to high pressure viscometry is examined.

THEORY OF METHOD

When a suspended quartz crystal of length l with axis parallel to its length has an alternating voltage applied to electrodes located longitudinally in the four quadrants between the Y and Z axes, mechanical torsion is produced which generates pure shear waves. In a vacuum, the crystal then resonates at a characteristic frequency f_0 , which for the fundamental mode is given by

$$f_0 = (2l(\rho_0 \sigma)^{\frac{1}{2}})^{-1}, \tag{1}$$

where $\sigma = 2.42 \times 10^{-12} \text{ cm}^2 \text{ dyn}^{-1}$, is the elastic modulus for torsion and ρ_Q is the density of quartz. Both f_0 and R_0 , the resistance at resonance in a vacuum, vary slowly with temperature.

When the crystal is placed in a viscous medium, the propagated wave is damped according to the equation for plane waves,

$$p = p_0 \exp\left[-\left(\frac{\pi f\rho}{\eta}\right)^{\frac{1}{2}}z\right],\tag{2}$$

where z is the distance from the surface of the crystal, and η and ρ are the viscosity and density of the medium respectively. The attenuation of a wave, $(\pi f \rho / \eta)^{\frac{1}{2}}$,

* present address : Diffusion Research Unit, Research School of Physical Sciences, Australian National University.

† present address: Dept. of Chem. Eng., Louisiana State University, Baton Rouge, Louisiana U.S.A.

in benzene at 25°C for a crystal 5 cm long and 0.5 cm diam, having a resonant frequency of 39 kHz is approximately 416 nepers cm⁻¹. The amplitude of the wave is therefore reduced to e^{-1} of its initial value at a distance of 2.4×10^{-4} cm from the crystal surface. This distance is small compared to the crystal radius so that plane wave theory is applicable.

The degree of dampling in a viscous fluid can be readily measured in terms of an impedance loading on the crystal which produces a change in the crystal resistance at resonance, $\Delta R = R - R_0$ and in the resonant frequency, $\Delta f = f_0 - f$. For Newtonian fluids, these changes are related to the viscosity and density of the fluid by the equations:

$$R - R_0 = \Delta R = K_1 (\pi f \eta \rho)^{\frac{1}{2}},\tag{3}$$

$$f_0 - f = \Delta f = K_2 (\pi f \eta \rho)^{\frac{1}{2}}.$$
 (4)

 K_1 and K_2 are electromechanical constants given by

$$K_{1} = \frac{2R(r^{-1} + l^{-1})}{\pi\rho_{0}(f_{2} - f_{1})} \left(1 - \frac{2\Delta f}{f_{0}}\right)$$
(5)

$$K_2 = (r^{-1} + l^{-1})/\pi \rho_Q, \tag{6}$$

341

where r and l are the crystal radius and length respectively, and f_2 and f_1 are the frequencies above and below the resonant frequency where the crystal resistance is 2R. The half-conductance points, $(f_1 \text{ and } f_2)$, are clearly indicated in fig. 5. The factor $(1-2\Delta f/f_0)$ in eqn (5) is a correction for the increase in the effective moment of inertia of the crystal due to the reaction of the fluid, which is of the order of 0.1 % in the liquids investigated.

EXPERIMENTAL

FACTORS AFFECTING MEASUREMENTS

CRYSTALS AND LEADS

Extensive investigations of the torsional crystal technique for measuring viscosity have been made by Mason¹ who devised the method, by Rouse et al.² and Lamb and coworkers.³ In the present work the crystals used were supplied by Brush Clevite Co. and had a length of 5 cm and diameter of 0.5 cm. According to eqn (1), the fundamental mode of frequency corresponding to this length was about 39 kHz. The positioning of the electrodes on, and the attachment of the leads to, the crystal are shown in fig. 1. The quartz cylinders were cut to an accuracy in angle of 10' with the main axis parallel to the X-axis to obtain a torsional mode of vibration, which is favoured 3 by a length-to-diameter ratio of about 10:1. Four gold electrodes were formed by vacuum deposition in quadrants of 80° axially along the crystal with the unplated regions lying in the Y- and Z-axes. For the fundamental mode of vibration, the length of the crystal is equal to half a wave-length with a node at the centre of the crystal. The leads attached to the crystal at this point therefore had a minimum damping effect. No difference was found in using either 0.014" diam. copper or 0.008" diam. phosphor-bronze leads. S-bends were inserted in the leads between the crystal and a metal supporting frame to minimize strain on the lead attachments. Polished and unpolished crystals were used to examine the effect of the surface finish of the crystal.

CRYSTAL CONSTANTS

In theory, either the change in frequency or in resonant resistance can be used to determine the viscosity of the fluid when the crystal constants and fluid density are known. K_1 can be determined by calibration with liquids of known density and viscosity and use of eqn (3). Alternatively, the two half-conductance frequencies can be measured and used in

nt of

nperial College,

ystal has been used tained for benzene, of 30 or 50°C and od agreement with

acy such as the pressures. Most ht or rolling ball in either rotating 'ter each pressure ' determining the ares up to about vork, application nined.

to its length has n the four quadwhich generates teristic frequency

(1) on and ρ_Q is the ta vacuum, vary

l wave is damped

(2)

b are the viscosity 1 wave, $(\pi f \rho / \eta)^{\frac{1}{2}}$, Sciences, Australian

n Rouge, Louisiana

VISCOSITY AT HIGH PRESSURES conjunction with the crystal dimensions in eqn (5) to give K_1 . These two sources of K_1

are compared for a range of liquids at 30°C in table 1 and the agreement averages 0.2 % with a range of -0.2 to +0.7 %. Density and viscosity data were taken from Timmermans ⁴

> GOLD ELECTRODE (VACUUM-DEPOSITED ON QUARTZ) OOB IN TINNED COPPER LEADS SOLDER SPOT

FIG. 1.-Configuration of electrodes for the torsional crystal.

except for iso- and n-pentane for which A.P.I. viscosity values 5 have been used. Table 1 also shows that the value of the constant K_1 is slightly dependent on the kinematic viscosity of the fluid. Harrison and Lamb³ have shown that the variation of K_1 and K_2 with kinematic viscosity is due to irregularity in the crystal surface and that this effect which is larger for K_2 is readily removed by careful polishing. According to eqn (2), the attenuation of the viscous wave is inversely proportional to the exponential of the square root of the kinematic viscosity. Therefore, if the kinematic viscosity is sufficiently small, the attenuation length and irregularities in the crystal surface may become comparable, resulting in an increase in the electromechanical constants. For fluids of kinematic viscosity greater than

TABLE 1.—VALUES OF THE CONSTANT K_1 for a 39.5 kHz polished crystal in various LIQUIDS AT 30°C AND ATMOSPHERIC PRESSURE

K_1/Ω cm ² s g ⁻¹			
from eqn (5)			
90			
85			
85			
30			
75			
30			
10			
91 3: 3: 3: 3: 3: 3: 3: 1:			

wo sources of K_1 nt averages 0.2 % om Timmermans ⁴

A. F. COLLINGS AND E. MCLAUGHLIN

1 centistoke this effect was negligible. The value of K_1 was also found to be slightly temperature dependent agreeing with the results of Harrison and Lamb,³ whereas De Bock *et al.*⁶ found K_1 to be virtually independent of temperature. Experimental values of K_2 (from frequency change in a standard liquid) varied from 5 to 10 % from values calculated from eqn (6), so that the change in frequency was not used in this work to determine viscosities.

APPARATUS AND TECHNIQUE

CRYSTAL ASSEMBLY

The crystals were mounted by soldering the 4 leads to metal straps, for which both stainless steel and gold-plated brass were used. The metal straps were screwed into a pair of pyrophilite rings to form a protective cage around the crystal. Opposite pairs of metal straps were electrically connected by small stainless steel bars contained in the lower pyrophilite ring. 10 BA tappings were made in 3 adjacent straps for connection to external leads. The crystal assembly was transferred as a unit from a stainless steel calibration vessel to the high-pressure apparatus, being conveniently mounted by screwing the upper pyrophilite ring against stainless steel spacers. Some of these details are shown in fig. 2,

HIGH PRESSURE SYSTEM

Fig. 2 shows the crystal assembly attached to the pressure vessel closure which was threaded to receive a stainless steel sleeve argon arc-welded to a stainless steel bellows. This separates the crystal and test liquid from the hydraulic fluid and allows compression. A schematic layout of the high-pressure system which was designed for pressures up to 10 000 bar is given in fig. 3. Pressures up to 2000 bar were obtained on the charge pump. For higher pressures the high pressure side of the intensifier was primed to 2000 bar and this pressure increased by operation of the drive pump. Pressure measurements were made on Bourdon gauges, a 40 000 psi gauge calibrated against a dead weight piston gauge, and

FIG. 2.—Details of mounting of crystal and attachment to pressure vessel closure. 1, Tufnol cylinders; 2, pressure vessel closure; 3, pressure seal; 4, stainless steel sleeve; 5, spacer; 6, pyrophilite ring; 7, metal support strap; 8, quartz crystal; 9, stainless steel bellows; 10, bottom plug; 11, connector.

en used. Table 1 cinematic viscosity and K_2 with kineect which is larger the attenuation of a root of the kinell, the attenuation e, resulting in an cosity greater than

YSTAL IN VARIOUS

(5)

FIG. 3.—Flowsheet of the high-pressure system.

a 10,000 atm gauge made and calibrated by the Budenberg Gauge Co. For convenience in comparing with existing data, experimental pressures are given in kg cm⁻² as used by Bridgman (1 kg cm⁻² = 0.981 bar). Measurements on the high-pressure gauge were converted using 1 atm = 1.033 kg cm⁻² and on the low pressure gauge by 1 psia = 0.0703 kg cm⁻². As our pressure measurements are no better than ± 1 %, 1 kg cm⁻² can be effectively read as 1 bar.

ELECTRICAL SYSTEM

Fig. 4 is a block diagram of the electronics measuring system. The crystal was connected as one arm of a Wayne-Kerr B 601 resistance-capacitance bridge driven by a Schlumberger FS1 digital signal generator with a stability of 1 part in 10^8 and incremental tuning of 0.01 Hz.

The bridge output was displayed on a Telequipment S43 oscilloscope for rough balance, with the final, accurate balance being made with an Airmee 853 wave analyser. Care was taken to eliminate stray and leads capacitances. Connections to the pressure vessel were made rigid by pulling the leads through a Tufnol cylinder which was screwed to the pressure plug, and the soldered connections to the bridge leads were shielded by a brass cap fitting over the Tufnol cylinder. Connections between the pressure vessel and RC bridge consisted of co-axial cable drawn through $\frac{1}{4}$ in. o.d. brass tube to provide both rigidity and secondary screening. The outer braidings of the co-axial cables were connected to the central tapping of the bridge input transformer to eliminate the effect of the leads capacitance in the measurements, and the secondary screenings were connected to the bridge earth terminal.

PROCEDURE

The test liquid was thoroughly degassed by alternate freezing and melting under vacuum, and was introduced again under vacuum through the end plug in the bellows assembly. The complete unit shown in fig. 3 was inserted in the pressure vessel. The system was pressurized and electrical measurements commenced after allowing up to 30 min for the heat of compression to be dissipated. The approach to thermal equilibrium could be monitored by the change in resonant frequency of the crystal. The capacitance of the crystal at resonance was set at the average value of capacitances obtained with an infinite resistance

liquid	obs.	recommended 4, 5	
benzene	1.4978	1.4979	
carbon tetrachloride	1.4576	1.4576	
cyclohexane	1.4234	1.4235	
n-pentane	1.3575*	1.3576*	
isopentane	1.3509	1.3507	
*	nD ₂₀		

For convenience m^{-2} as used by the gauge were 1 psia = 0.0703 cg cm⁻² can be

al was connected a Schlumberger ining of 0.01 Hz.

asurements.

Liquid	Pressure/kg cm ⁻²		absolute viscosity/cP			
		$\frac{T/^{\circ}C}{P \max/kg \operatorname{cm}^{-2}}$	30 890	40 1260	50 1755	
benzene	1		0.561	0.491	0.434	
	250		0.692	0.607	0.537	
	500		0.838	0 733	0.650	
	750		1,000	0.875	0.774	
	1000		1.102 (000)	1 021	0.005	
	1000		1.102 (900)	1.001	1.051	
	1250			1.204	1.051	
	1500	<			1.211	
	1750	T100	20	20.4	1.500	
		$P_{\rm max}/{\rm kg}{\rm cm}^{-2}$	1350	38.4 1750	1860	
carbon tetrachloride	1		0.843	0.745	0.649	
	2.50		1.054	0.932	0.823	
	500		1.290	1.143	1.012	
	750		1.553	1.375	1.217	
	1000		1.843	1.626	1.434	
	1250		2.161	1.892	1.668	
	1500			2 173	1,911	
	1750			2.465	2.161	
		T/°C	- 30	34	50	
		Pmax/kg cm ⁻²	340	420	070	
cyclohexane	1		0.819	0.760	0.605	
	100		0.924	0.857	0.675	
	200		1.038	0.962	0.751	
	300		1.162	1.072	0.833	
	400		1.228 (350)	1.191	0.923	
	600				1.130	
	800				1.374	
		TIPC	30		50	
		Pmax/kg cm ⁻²	7110		5200	
n-pentane	• 1		0.215		0.179	
	500		0.332		0.275	
	1000		0.450		0.371	
	1500		0.578		0.470	
	2000		0.725		0.578	
	3000		1.075		0.848	
	4000		1.515		1,196	
	5000		2 080		1.646	
	6000		2 784			
	7000		3.681			
		TIOC	30		50	
		Pmax/kg cm ⁻²	3130		2100	
isopentane	1		0.205		0.174	
	500		0.327		0 279	
	1000		0.454		0.391	
	1500		0.593		0.510	
	2000		0.745		0 635	
	2500		0.917		1.000	
	3000		1 109			
	5000					

TABLE 2.--EXPERIMENTAL VISCOSITIES OF LIQUIDS UNDER PRESSURE

347

setting at ± 5 kHz from the fundamental frequency. These two results were usually identical and did not differ by more than 0.1 pF. Having set the capacitance, the bridge resistance and generator frequency were varied until the balance was obtained. The bridge resistance was then set at twice the resonance value and capacitance and frequency were varied until the two half-conductance frequencies, indicated by f_1 and f_2 in fig. (5), were obtained. K_1 was calculated at each pressure from eqn (5) and this value was used in eqn (3) with the measured ΔR to calculate the viscosity of the liquid.

In fig. 5, the measured relationship between resistance, capacitance and frequency for a 39 kHz crystal immersed in benzene at atmospheric pressure and 25° C is shown. While capacitance does not enter the equations from which the viscosity of the surrounding medium is obtained, its significance is clearly indicated.

PURITY OF MATERIALS

All liquids investigated were obtained from Hopkin and Williams Ltd. Spectrosol carbon tetrachloride, and cyclohexane were used without further purification after checking the refractive index. R.I.-grade benzene was fractionally distilled over P_2O_5 and G.P.R. n- and iso-pentane were fractionally distilled over sodium wire.

RESULTS

VISCOSITIES

Table 2 gives the measured values of viscosity. The results are smoothed data from at least two runs with increasing and decreasing pressure, except for benzene at 40°C, cyclohexane at 34°C and carbon tetrachloride at 38.4°C for each of which only one set of measurements was made. The (pressure, density) data for the liquids were taken from Bridgman⁷ except for cyclohexane for which *PVT* measurements have been made by Holder and Whalley,⁸ and Reamer and Sage.⁹ Also shown in table 2 are the maximum pressures for each liquid and temperature. In fig. 6-10 the results in table 2 are compared with existing literature data.

DISCUSSION

The accuracy of the torsional crystal technique for measuring the viscosity of liquids at atmospheric pressure is indicated by the agreement between measured and calculated values of K_1 in table 1. An average agreement of 0.2 % was obtained with the worst agreement (0.5-0.6 %) occurring with the pentanes, for which there exists considerable uncertainty in literature values.^{4, 5} Our results are in keeping with the conclusion of the Franklin Institute report ² that torsional crystal viscosity measurements in liquids are capable of an accuracy of 0.5 % or better.

In extending the use of this method for high pressures, additional sources of error were considered. These were (i) the inaccuracy of PVT data for liquids, (ii) contamination of the sample liquid by leakage of hydraulic fluid into the bellows assembly, and (iii) temperature variation in the oil bath or through heat of compression.

The probable accuracy of the density data is ± 0.1 % contributing an uncertainty of ± 0.2 % to the viscosity results. Since no differential pressure across the bellows seal occurred, scepage of hydraulic fluid was considered unlikely, and was not apparent in the results, where an increase in $(\partial \eta / \partial p)_T$ would result. As mentioned earlier, the bulk of the pressure vessel assisted in damping out temperature fluctuations in the bath. The elimination of temperature increases caused by compressions of the hydraulic and test fluids was monitored by the crystal resistance which clearly indicated when equilibrium had returned. The uncertainty in viscosity measurements under pressure was concluded to be approximately 1 %. Comparisons with existing

ESSURE

11

17

3

5

1

14

15

12

13

15

26

12

13

55

50 57

52 /2)1 50 1755

0.434

0.537

0.650

0.774

0.905

1.051

1.211 1.388

50 1860

0.649

0.823

1.012

1.217

1.434

1.668

1.911

2.161

50 870

0.605

0.675

0.751

0.833

0.923 1.130 1.374

50 5200

0.179

0.275

0.371

0.470

0.578

0.848

1.196

1.646

50 2100

0.174

0 279

0.391

0.510

FIG. 6.-. The viscosity of benzene. , Jobling and Lawrence; O, Bridgman 7; --, this work.

FIG. 8.—The viscosity of carbon tetrachloride. (), Van Wijk et al.; (), Bridgman 7; --, this work.

FIG. 9.-The viscosity of isopentane. O, Bridgman 7; -, this work.

; --, this work.

work.

falling-weight viscometer data,^{7. 10-12} are made in fig. 6-10. Most of the existing viscosity data in liquids under pressure were obtained by Bridgman, whose results at 30°C for benzene, cyclohexane and carbon tetrachloride agree well with the present data in the lower pressure range but are 2-4 % higher at the upper limit. The highest pressures for which Bridgman reported the viscosities of these liquids at 30°C are in excess of the published melting pressures ^{7, 13} and are probably extrapolated.

The present data appear to be in better agreement with those of Jobling and Lawrence for benzene ¹⁰ and Van Wijk *et al.* for carbon tetrachloride ¹¹ than are the results of Bridgman,⁷ and the overall consistency of $(\partial \eta / \partial p)_T$ at different temperatures is good. Good agreement was observed between the present data and those of Bridgman ⁷ for isopentane at 30°C. In table 3, viscosities of n-pentane at pressures up to 7 000 kg cm⁻² from this work have been compared with measurements by Bridgman⁷

TABLE 3.— COMPARISON OF PRESENT AND LITERATURE VALUES ^{7, 12} FOR THE RELATIVE VISCOSITY OF IN-PENTANE AS A FUNCTION OF PRESSURE

			ratio η_P / η_1			
pressure	pressure this w		rk Bridgman ⁷		Cappi and Bett 12	
Ag cin -	1/ 0 30	50	30	13	30	
1	1.000	1.000	1.000	1.000	1.000	
500	1.544	1.536	1.517	1.594	1.560	
1000	2.092	2.073	2.065	2.246	2.128	
2000	3.372	3.229	3.432	3.705	3.428	
3000	5.001	4.737			5.041	
4000	7.047	6.682	7.031	7.330	7.115	
5000	9.674	9.196			9.741	
6000	12.95		12.94	12.50	13.06	
7000	17.12				17.31	

of the existing 1, whose results with the present it. The highest iids at 30°C are ly extrapolated.

of Bridgman⁷ and is figure.)

ng and Lawrence n are the results temperatures is 1 those of Bridgt pressures up to ts by Bridgman 7

RELATIVE VISCOSITY

vi and Bett 12 30 .000 .560 .128.428 .041 .115 .741 .06 .31

and Cappi and Bett.¹² The present n-pentane data at 30°C are bracketed by the results from these earlier investigations 7. 12 each of which had a reported accuracy of ±1 %.

High pressure viscosity measurements were made on benzene at 30 and 50°C and on cyclohexane and carbon tetrachloride at 50°C using an unpolished quartz crystal with a fundamental frequency of approximately 30 kHz. Because of the rougher surface of this crystal, the value of K_1 was affected more by the change in kinematic viscosity of the medium than for polished crystals. Although these results showed slightly more experimental scatter, the smoothed values agreed to ± 0.5 % with the polished crystal data.

At present the theory of the viscosity of liquids has not developed sufficiently to enable meaningful comparisons between theory and experiment to be made for molecules as complex as those presented here. It is, however, of interest to compare briefly the results expected on the Enskog theory. According to Enskog 14 the viscosity of a dense fluid η can be written in terms of the value of the corresponding dilute fluid η_0 at the same temperature by the equation :

$$\frac{\eta V}{\eta_0 b_0} = \frac{1}{y} + 0.8 + 0.76y,\tag{7}$$

where $b_0 = 2\pi N\sigma^3/3$ with σ the molecular diameter and y = (pV/NkT) - 1. It follows that the relative change in viscosity as a function of pressure is

$$\frac{\eta_p}{\eta_1} = \frac{V_1 y_1}{V_p y_p} \left(\frac{1 + 0.8 y_p + 0.76 y_p^2}{1 + 0.8 y_1 + 0.76 y_1^2} \right).$$
(8)

1.108

1.179

To obtain some relevance of hard-sphere theory to experiment for real systems Michels and Gibson ¹⁵ suggested replacing the pressure by the kinetic pressure $T(\partial p/\partial T)_{\nu}$, so that $y = V/R(\partial p/\partial T)_T^{-1}$. If this is done for the present results, table 4 shows poor agreement with experiment even for the simplest member of the present series CCl_{4} . The results for n-pentane, e.g., show that as the pressure increases the discrepancy becomes worse, being approximately a factor of 5 at 7000 bar. No other

TABLE 4.—CO	MPARISON	OF CALCULAT	TED AND EXPER	IMENTAL VALU	TES OF η_p/η_1 FO	R CCI ₄ AT 30°C	•
P (bar)	1	250	500	750	1000	1250	
$\eta_p/\eta_1 \exp t$.	1	1.250	1.530	1.842	2.186	2.563	

1.075

1

1.037

moderately complex organic liquids such as are reported here.

 η_p/η_1 calc. theory without a number of adjustable parameters at present seems capable of producing the steep pressure dependence of viscosity that actually occurs for even

Thanks are due to Prof. Ubbelohde for his interest in this work. One of us (A. F. C.) thanks the National Coal Board for the award of a maintenance grant.

- ² P. E. Rouse, E. D. Bailey and J. A. Minkin, A.P.I. Symp. Anal. Research (Cleveland, Ohio, 1950).
- ³ A. J. Barlow, G. Harrison, J. Richter, H. Seguin and J. Lamb, Lab. Practice, 1961, 10, 786.
- ⁴ J. Timmermans, Physico-Chemical Constants of Pure Organic Compounds (Elsevier, New York, 1950).
- ⁵ Amer. Petr. Inst. Proj. no. 44 (Carnegie Institute of Technology, Pittsburgh, 1950).

1.269

¹ W. P. Mason, Trans. Amer. Soc. Mech. Eng., 1947, 69, 359; Piezoelectric Crystals and Their Application to Ultrasonics (Van Nostrand, Princeton, N.J., 1950).

⁶ A. DeBock, W. Grevendock and H. Awouters, Physica, 1967, 34, 49.

⁷ P. W. Bridgman, *The Physics of High Pressures* (Bell and Sons, London, 1949).
 ⁸ G. A. Holder and E. Whalley, *Trans. Faraday Soc.*, 1962, 58, 2095.

⁹ H. H. Reamer and B. H. Sage, *Ind. Eng. Chem.*, 1957, 2, 9.
¹⁰ A. Jobling and A. S. C. Lawrence, *Proc. Roy. Soc. A*, 1951, 206, 257.
¹¹ W. R. Van Wijk, J. H. Van der Veen, H. C. Brinkman and W. A. Seeder, *Physica*, 1940, 7, 45.

¹² J. B. Cappi, *Ph.D. Thesis* (Imperial College, University of London, 1964).
 ¹³ S. D. Hamman, *Physico-Chemical Effects of Pressure* (Butterworths, London, 1957).

14 D. Enskog in S. Chapman and T. G. Cowling, The Mathematical Theory of Non-Uniform Gases (C.U.P., 1953).

¹⁵ A. Michels and R. O. Gibson, Proc. Roy. Soc. A, 1931, 134, 288.